

This project has received financial support from the European Union's Horizon 2020 Programme under grant agreement no. 870697

Deliverable

D3.5 Cloud design for model calibration and

simulation

Project Acronym: DUET

Project title: Digital Urban European Twins

Grant Agreement No. 870697

Website: www.digitalurbantwins.eu

Version: 1.0

Date: 30 November 2020

Responsible Partner: TNO

Contributing Partners: KUL, ATC, UWB

Reviewers: Internal

Gert Vervaet (AIV)

Philippe Michiels (IMEC)

Karel Charvat (P4All)

External

Yannis Charalabidis

Dissemination Level: Public X

Confidential – only consortium members and European

Commission

http://www.digitalurbantwins.eu/

D3.5 Cloud design for model calibration and simulation

© 870697 DUET Project Partners 2 30/11/2020

Revision History

Revision Date Author Organization Description

0.1 25.09.2020 Max Schreuder TNO Initial structure

0.2 02.10.2020 Walter Lohman TNO Basics

0.3 05.10.2020 Walter Lohman/Hans Cornelissen TNO Text fixes

0.4 12.11.2020 Walter Lohman/Max Schreuder TNO
for internal and

external review

0.5 17.11.2020 Walter Lohman TNO

processed

comments from

internal review

0.6 18.11.2020
Hans Cornelissen/Walter Lohman/

Max Schreuder
TNO

version ready for

review

0.7 25.11.2020 Walter Lohman/ Max Schreuder TNO
provision of final

version

0.8 27.11.2020 Expert review
External

experts

External expert

comments

processing

0.9 30.11.2020 Max Schreuder/Walter Lohman TNO

processed

external review

comments

1.0 30.11.2020 Max Schreuder TNO Final version

D3.5 Cloud design for model calibration and simulation

© 870697 DUET Project Partners 3 30/11/2020

Table of Contents

Executive Summary ... 5

1. Introduction ... 6

2. API Specification .. 8

2.1 Model API Messages .. 9

2.2 Model Agent API Messages ... 10

2.3 Data API Messages ... 12

2.4 Model to Model discussion .. 14

3. Model specific API.. 15

3.1 Noise model extensions ... 15

3.2 Air model extensions ... 15

3.3 Traffic model extensions .. 15

4. HPC in DUET ... 16

4.1 HPC Architectures .. 16

4.2 HPC for the DUET models in containers .. 17

4.3 HPC example Air Model ... 18

4.4 HPC development for the Dynamic Traffic Assignment Model ... 18

5. Conclusions .. 19

6. References ... 21

D3.5 Cloud design for model calibration and simulation

© 870697 DUET Project Partners 4 30/11/2020

Tables
Table 1: Model API Messages formats .. 10

Table 2: Model Agent API Messages formats .. 12

Table 3: DATA API Messages formats .. 13

Figures
Figure 1: Cloud design for models ... 7

Figure 2: Model activation & execution sequence .. 8

Figure 3: DUET multi model integration .. 14

Figure 4: Visualisation examples of HPC Cluster/Grid and HPC GPU .. 17

Figure 5: HPC using containers .. 17

Figure 6: Parallel executing concentration calculations on HPC GPUs.. 18

D3.5 Cloud design for model calibration and simulation

© 870697 DUET Project Partners 5 30/11/2020

Executive Summary

The DUET system contains multiple models to perform the calculations for the Digital Twin. The DUET T-cell

architecture enables the integration of these models of the DUET system. Computational models (air, noise,

traffic) are integrated in DUET by connecting to the DUET T-Cell by means of a suitable API.

This API will enable the models to be controlled by the DUET system. The API will facilitate the start and stop

of the simulation, calibration and validation, the exchange of necessary data and results. The API will be

accessible using a gateway to the Apache Kafka Platform1, and will relay messages between Kafka and the

models. Kafka functions as the main message streaming platform in the DUET T-Cell architecture.

The availability of the individual models is realised using Docker containers2. The individual models will be

packaged inside a Docker container enabling deployment anywhere in the available cloud, thus forming a

cloud of available models. The models will run outside the DUET T-Cell and are interconnected using the API.

A Docker Orchestrator is implemented for starting up, retrieving status and termination of the individual

model docker containers.

The DUET system can effectively use HPC for model calculations. Most of the models require extensive

computational power and can have a long runtime; hours, days, weeks. In order to achieve a fast response to

requests for ‘What-If Scenario’ simulations, model calculations can be divided into a lengthy pre-processing

calculation/calibration stage and a fast calculation for changes of a smal(ler) scale. The pre-processing stage

can use HPC to shorten runtime or models can be ported to run on HPC hardware directly.

This deliverable highlights HPC architectures available to the current models in DUET;

● HPC Cluster/Grid. Multiple servers connected by a fast network.

● HPC Cloud. Almost the same as the HPC Cluster, only the servers are available on the Internet.

● Docker services (Linux/Windows) and Service Fabrique (Microsoft) will spawn models on suitable

resources in the cloud.

● Multi-Core, GPU or Multi-GPU. This refers to methods of executing models or compute intensive parts

of the model in parallel using suitable hardware on one (or more) machine(s).

Primarily, this deliverable provides the generic description of the minimal API functions for model integration

in the DUET architecture.

1 https://kafka.apache.org/
2 https://www.docker.com/

https://kafka.apache.org/
https://www.docker.com/

D3.5 Cloud design for model calibration and simulation

© 870697 DUET Project Partners 6 30/11/2020

1. Introduction

This deliverable provides the generic description of the minimal API functions for the purpose of model

integration in the DUET architecture. It also discusses HPC and its use for training, calibrating and simulation

of the models.

The first and second chapter of this deliverable discusses the model API specifications, provides examples of

API messages and model specific messages. The third chapter discusses how the API can facilitate HPC for

DUET.

An overview and description of the DUET models (Air, Traffic, Noise) is given in Deliverable D3.3 Smart City

domains, models and interaction frameworks v1. This deliverable also describes the required input and

output data for these models.

This deliverable must be read within the context of the following deliverables;

● D3.1 IoT stack and API specifications v1 describes the components onboarding of data into DUET

● D3.3 Smart City domains, models and interaction frameworks v1 describes the models that the

different partners can provide to DUET

● D3.4 Smart City domains, models and interaction frameworks v2 (M24), will describe and report on

the model adaptations for DUET

● D3.8 Digital Twin data broker specification and Tools v1 describes the high level roadmap and

technical architecture and implementation tools and frameworks of the digital twin data broker from

the viewpoint of DUET

● D5.1 System Architecture & Implementation Plan discusses an overall architecture and

implementation or deployment plan

● D3.10 Multi Layered security model specification discusses the separation of the Kafka Message

Streaming Platform and the connection APIs to bring extra security

A central component of the DUET T-Cell is the message streaming platform, Apache Kafka, for the exchange

of events and data. Communication and Data Exchange with the T-Cell and thus other parts of the DUET system

is done using the Kafka platform. The models define their own ‘channels or topics’ for exchanging information

with the system.

The data to be exchanged with the model or the Docker Orchestrator will be formalized in a minimal required

API. Channel definitions and additions to the API for specific model interactions will be described in the

relevant model sections. An overview of this model cloud is given in figure 1.

D3.5 Cloud design for model calibration and simulation

© 870697 DUET Project Partners 7 30/11/2020

Figure 1: Cloud design for models

The models are packaged inside a Docker Container, making deployment in the cloud possible. Where, When

and Which models are deployed when requested will be controlled by a Docker Orchestrator such as

Kubernetes3. A set of suitable scripts will regulate the interaction with the DUET system and the Models in the

Cloud.

3 https://www.docker.com/products/kubernetes

https://www.docker.com/products/kubernetes

D3.5 Cloud design for model calibration and simulation

© 870697 DUET Project Partners 8 30/11/2020

2. API Specification

The models in the cloud are controlled by a Model Agent and corresponding API and deployed upon request.

An Orchestrator is responsible for deployment of models, taking platform and resource requirements into

account. The Docker technology will use a set of scripts based on Kubernetes4 or similar. The Orchestrator

receives messages indirectly through the Model Agent API, and executes the requests to Start (Deploy), Stop

(Delete) the models.

The start request received from the DUET system will include a Model context (parameters, data, …) to be

pushed and passed to the model. Response messages from the model include a unique instance Id to

optionally control or get information from the specific model.

When a model is deployed, it should listen for command messages from the Orchestrator/Model Agent API

and handle data through the DATA API. Necessary properties, data or links to data sources can be passed in

the context section included with the startModel request.

Figure 2: Model activation & execution sequence

The DUET T-Cell has two major RESTful APIs; The Model API and the Data API. RESTful APIs provide a

standardised way of communicating with data sources on the web. REST can be implemented with a multitude

of technologies but we are focusing specifically on RESTful HTTP here.

4 https://kubernetes.io/

https://kubernetes.io/

D3.5 Cloud design for model calibration and simulation

© 870697 DUET Project Partners 9 30/11/2020

Although the “verbs“ of the HTTP protocol are fixed (GET, POST, PUT, PATCH, DELETE,…) and known, their

implementation can differ from API to API. Many best practices exist and the use of REST frameworks to build

APIs can mean a standardised way of building the API but it is not enforced (you can always add your own

endpoints that misuse the HTTP verbs). HTTP response codes are similarly untrustworthy since their correct

usage is also not enforced5 . Lastly, any HTTP method can return data on a request (even though it’s not the

correct RESTful implementation) whether it’s in the body

Similarly, HTTP headers are not always used correctly or consistently across API’s (or even within the same

API). Simple things like the letter case a header is written in can mess up case-sensitive REST libraries and

incorrect header values (by using existing headers for proprietary information) are allowed but destructive.

In the following section we concentrate on the messages that need to be exchanged through the API’s. We’ve

chosen to use the JSON message format, since its standard is well known and widely used.

2.1 Model API Messages

When connecting the Models to the T-Cell, a Model Agent API defines the methods necessary to use a model

from the DUET system. Models reside somewhere in the cloud and need to be deployed and run with a proper

context when they are requested from the DUET system. When a model is deployed, a unique ID will be

assigned to the deployed instance of the model. The Model data exchange will be done using the Data API.

Model API Messages formats

Request/
response

Description JSON example

generic format This is the general format of
all Model Agent API JSON
commands

{

 "cmd": "<Model-Agent-API-Command>",

 "payload": {}

}

[REQUEST]
getModels

Request a list of known
available models

{

 "cmd": "getModels",

 "payload": {}

}

[RESPONSE]
getModels

List of available models [

 {

 "modelname":"<model-name>",

 "status": "<model-status-enum>"

 }

]

"<model-status-enum>":

["ready",

 "initializing",

 "running",

5 https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

D3.5 Cloud design for model calibration and simulation

© 870697 DUET Project Partners 10 30/11/2020

Model API Messages formats

Request/
response

Description JSON example

 "calibrating",

 "stopping",

 "finished",

 "error",

 "unknown"]

[REQUEST]
startModel

The startModel request will
include the information of the
model to be started, together
with the context to be passed
to the model. The context
should include all information
the model needs to run like
inputs, outputs, extent, time
bounds etc.

{

 "modelname":"<model-name>",

 "context":

 {

 "property_1": "....",

 "property_2": "....",

 "property_n": "....",

 "input_data_url": "https://my.data",

 "output_data_url": "https://my.data"

 }

}

[RESPONSE]
startModel

 {

 "id": "<model-instance-id>",

 "status": "<model-status-enum>"

}

[REQUEST]
stopModel

The stopModel request will
pass the id of the model to be
stopped.

{

 "id": "<model-instance-id>"

}

[RESPONSE]
stopModel

 {

 "id": "<model-instance-id>",

 "status": "<model-status-enum>"

}

[PUSH]
statusModel

This message is sent to the
Model API without a request;
initiated by the model when
it’s status changes.

{

 "id": "<model-instance-id>",

 "status": "<model-status-enum>"

}

Table 1: Model API Messages formats

2.2 Model Agent API Messages

When a request from the DUET system for a model is received, the model image should be located.

Currently this is done using an Orchestrator, which has a register of deployable models with their resource

and platform requirements. At a later stage of the DUET development this can also be fulfilled using a Model

Catalog inside the DUET core.

The requested model will be deployed, the necessary context is exchanged and a unique instance ID is

https://my.data/
https://my.data/

D3.5 Cloud design for model calibration and simulation

© 870697 DUET Project Partners 11 30/11/2020

assigned. This ID allows control and information exchange with the model.

The Model should listen for the messages from the Model Agent (or Orchestrator). The minimum set of API

messages the Model should respond to are listed in this section.

Model Agent API Messages formats

Request/
response

Description JSON example

generic format This is the general format of
all Model JSON commands

{

 "cmd": "<Model-Command>",

 "payload": {}

}

[REQUEST]
deployModel

The deployModel request will
include the information of the
model to be started, together
with the context to be passed
to the model. The context
should include all information
the model needs to run like
inputs, outputs, extent, time
bounds etc.s

{

 "cmd": "deployModel",

 "modelname":"<model-name>",

 "context":

 {

 "property_1": "....",

 "property_2": "....",

 "property_n": "....",

 "input_data_url": "https://my.data",

 "output_data_url": "https://my.data"

 }

}

[RESPONSE]
deployModel

 {

 "id": "<model-instance-id>",

 "status": "<model-status-enum>"

}

[REQUEST]
runModel

The runModel request will
start the deployed model in
the correct mode.

{

 "cmd": "runModel",

 "id": "<model-instance-id>",

 "mode": "<model-mode-enum>"

}

"model-mode-enum":

[

 "calibrate",

 "calculate",

 "validate"

]

[RESPONSE]
runModel

 {

 "id": "<model-instance-id>",

 "status": "<model-status-enum>"

}

https://my.data/
https://my.data/

D3.5 Cloud design for model calibration and simulation

© 870697 DUET Project Partners 12 30/11/2020

Model Agent API Messages formats

Request/
response

Description JSON example

[REQUEST]
deleteModel

The deleteModel request will
pass the id of the model to be
stopped and undeployed.

{

 "cmd": "deleteModel",

 "id": "<model-instance-id>"

}

[RESPONSE]
deleteModel

 {

 "id": "<model-instance-id>",

 "status": "<model-status-enum>"

}

[PUSH]
statusModel

This message is pushed by the
Model without a request;
initiated by the model when
its status is updated.

{

 "id": "<model-instance-id>",

 "status": "<model-status-enum>"

}

Table 2: Model Agent API Messages formats

2.3 Data API Messages

The Data API of the DUET core is used to exchange the data to and from the models. At the start request for a

model, a suitable context with data or links to data sources is included. When the model is deployed, it uses

this information to fetch the data needed for calculation, calibration or validation processes.

Changes of data need to trigger events in the DUET core. The Kafka Message Steaming platform supports this

using a Publish/Subscribe mechanism. The Kafka Streaming platform is not exposed outside the DUET core

and the Data API and corresponding Message Gateway will relay or trigger corresponding messages to Kafka.

A choice still has to be made if multiple data sets share one topic or the payload contains an ID to separate

those.

The message exchange between the Message Gateway/Data API and the Model is listed in this section.

DATA API Messages formats

Request/
response

Description JSON example

generic format This is the general format of
all Data JSON commands

{

 "topic": "<Topic-Identification>",

 "payload": {}

}

<Topic-Identification>:

[

D3.5 Cloud design for model calibration and simulation

© 870697 DUET Project Partners 13 30/11/2020

DATA API Messages formats

Request/
response

Description JSON example

 model.traffic.kul-data.1,

 model.traffic.p4a-data.1,

 model.air-quality.1,

 model.noise-pollutions.1

]

[GET]
/request

The Model initiates a request
for input data using the URL
included in the context. Not
implemented yet.

{

 "topic": "<Topic-Identification>"

}

[PUSH]
/request

This is not yet clear, when
DUET has new data for the
model. The Core should push
this data to the model.

{

 "topic": "<Topic-Identification>",

 "payload": {}

}

[POST]
/publish

When a Model has data, it
pushes this through the Data
Gateway.

{

 "topic": "<Topic-Identification>",

 "payload": {}

}

"payload" containing data to be pushed.

[POST]
/publish

When data change occurs
somewhere in the DUET
system. Models should receive
the new data. This data is
PUSHed towards the Model.

{

 "topic": "<Topic-Identification>",

 "payload": {}

}

Table 3: DATA API Messages formats

The API for data exchange is work in progress. The current API is described here:

http://20.67.144.95:8081/swagger-ui/index.html?configUrl=/v3/api-docs/swagger-config .

http://20.67.144.95:8081/swagger-ui/index.html?configUrl=/v3/api-docs/swagger-config

D3.5 Cloud design for model calibration and simulation

© 870697 DUET Project Partners 14 30/11/2020

2.4 Model to Model discussion

The DUET system is an integral system containing multiple components that are dependent on each other. An

Air Quality model, for example, relies on the output of a Traffic Model. It should recalculate the Air Quality if

there is a change in the calculated Traffic Data.

The DUET system uses the Publish/Subscribe mechanism to interconnect these dependent Models. As soon

as a Traffic model publishes new outputs, a corresponding event is triggered on the Kafka Message Streaming

Platform thus notifying Data gateways. Data gateways will relay the data to ‘Subscribers’ that are subscribed

to the ‘Topic’ in the published data.

This mechanism indirectly takes care of Model to Model data exchange. When Models need to exchange data,

there has to be an agreement on the published or subscribed ‘Topic’. This topic is still a point of discussion and

may be modified at a later stage in the DUET development.

Figure 3 shows a sequence diagram for a dependent model run. First a Traffic model is run which updates

information of the traffic volumes. Next the Noise model is run, so changes to the traffic volume are

reflected in the calculated Noise Pollution. This sequence diagram (Figure 3) shows there is no direct

connection between the models. The interconnection is accomplished using the Message Streaming

Platform.

Figure 3: DUET multi model integration

D3.5 Cloud design for model calibration and simulation

© 870697 DUET Project Partners 15 30/11/2020

3. Model specific API

The individual models can support an extended API. These extensions could be described here when they

become available.

3.1 Noise model extensions

For now, there are no model specific extensions to the messages. This might change in a future stage in the

development of the DUET platform.

3.2 Air model extensions

For now, there are no model specific extensions to the messages. This might change in a future stage in the

development of the DUET platform.

3.3 Traffic model extensions

For now, there are no model specific extensions to the messages. This might change in a future stage in the

development of the DUET platform.

D3.5 Cloud design for model calibration and simulation

© 870697 DUET Project Partners 16 30/11/2020

4. HPC in DUET

The DUET system contains multiple models to perform calculations for the Digital Twin. Most of the models

require extensive computational power and can have a long runtime; hours, days, weeks. In order to achieve

a fast response to requests for ‘What-If Scenario’ simulations, model calculations can be divided into a lengthy

pre-processing calculation/calibration stage and a fast calculation for changes of a smal(ler) scale.

HPC architectures help us to execute these pre-processing calculations within an acceptable runtime. Using

the results from the pre-processing step, it is possible to achieve a fast response to deviations initiated by the

DUET system user. Also long training and calibration of models can effectively be done using HPC. DUET can

then have fast feed forward models relying on this training/calibration for forecasting and prediction.

Another method of using HPC is to enable models to use HPC architectures directly. The use of GPUs to

perform calculations in parallel can gain enough speed for direct use in the DUET system. Models most likely

will not run out-of-the-box on these highly parallel driven architectures, but need to be ported/converted to

benefit.

DUET’s modular architecture will be an enabler to effectively use HPC architectures. This chapter will describe

relevant HPC architectures for the current models in DUET.

4.1 HPC Architectures

Currently there are multiple architectures that can be referred to as HPC architectures. Suitable HPC

architectures for the DUET models are the following:

● HPC Cluster/Grid. Multiple servers connected by a fast network. Computations can be divided among

the available servers in the cluster. Mostly a batch oriented approach, suitable for lengthy pre-

processing calculations, training and calibration.

● HPC Cloud. Almost the same as the HPC Cluster, only the servers are available on the Internet.

Especially if a training or calibration step only needs to be calculated once, it can be executed on an

Internet Cloud, instead of having an HPC Cluster on premise.

● Docker services (Linux/Windows) and Service Fabric (Microsoft) will spawn models on suitable

resources in the cloud. Computational power can be dynamically increased or decreased, according

to the need.

● Multi-Core, GPU or Multi-GPU. This refers to methods of executing models or compute intensive parts

of the model in parallel using suitable hardware on one (or more) machine(s). See ITEA3 - MACH6.

6 https://itea3.org/project/mach.html

https://itea3.org/project/mach.html

D3.5 Cloud design for model calibration and simulation

© 870697 DUET Project Partners 17 30/11/2020

Figure 4: Visualisation examples of HPC Cluster/Grid and HPC GPU7

4.2 HPC for the DUET models in containers

In DUET, models for multiple domains are required to perform the use-case calculations. HPC clusters can be

used to run the individual models across different resources in the cloud. A container with a model can run

anywhere in the cloud while still working together with the other models by using the DUET T-Cell architecture.

With this method the necessary computational power for the set of models is divided over the available

resources in the HPC cluster/grid.

The flexible DUET Publish/Subscribe architecture based on the Kafka Message Streaming Platform can be used

to determine if a (new) pre-processing step is necessary. By defining the dependency of a model for pre-

processed results using an assigned ‘Topic’, the system can deploy the pre-processing model to a HPC instance

when pre-processed data for the fast model is not yet present. When ready, the pre-processing model

publishes the results back to the DUET system and thus enables DUET to use the fast model.

Figure 5: HPC using containers8

7source:

https://www.researchgate.net/publication/236666656_Accelerating_Fibre_Orientation_Estimation_from_Diffusion_W
eighted_Magnetic_Resonance_Imaging_Using_GPUs
8 source: Microsoft

D3.5 Cloud design for model calibration and simulation

© 870697 DUET Project Partners 18 30/11/2020

4.3 HPC example Air Model

The Air Model is an example of a model that can utilize HPC within the DUET architecture. The Air Model

calculations consist of multiple stages, see also figure 6;

1. Pre-processing stage; calculating background concentrations based on emissions from emission

databases. Calculations are done using an HPC cluster with 12 servers containing 64 CPU cores. The

calculations run in 3 stages from coarse to fine. The first stage calculates for a 30km x 30km, scale of

Europe. The Second stage is a 7km x 7km on country scale and the last stage is a 1km x 1km resolution

at city scale. These calculations are scaled across the HPC cluster using OpenMP in a batch oriented

approach.

2. Interactive stage; calculating contribution of traffic emissions to the background from the pre-

processing stage. Concentrations are calculated for receiver points independently, executed in parallel

on NVidia GPU hardware.

Figure 6: Parallel executing concentration calculations on HPC GPUs9

4.4 HPC development for the Dynamic Traffic Assignment Model

Deliverable D3.3 Smart City domains, models and interaction frameworks v1, details some avenues for

research on HPC use for traffic models and highlights some of the restrictions we’re facing in the use of

supercomputers (see page 16-17). The methodology being used here is still under development and will be

elaborated on in Deliverable D3.4 Smart City domains, models and interaction frameworks v2.

9 source: TNO Poster 2011 for ISC: Urban noise mapping using parallel computation on a Graphics Processing Unit (GPU)

(www.isc.org)

https://drive.google.com/file/d/1O_PPd68s8f6gMWOQxOb6wopQ2-OmSjgs/view?usp=sharing

D3.5 Cloud design for model calibration and simulation

© 870697 DUET Project Partners 19 30/11/2020

5. Conclusions

The DUET T-Cell architecture and its modular approach, enables dynamic and on-demand attachment of

models to the DUET system. The use of a message streaming platform also allows the DUET system to NOT set

a fixed sequenced chain of models. Models will be signalled to run, when changed data or event messages

instruct a model to perform a ‘run’. This topic is still a point of discussion and may be modified at a later stage

in the DUET development. Other open discussions are listed below.

Further discussion relates to the 'deleteModel' request listed in Chapter 2.2. It is not yet clear if this is a

necessary or wanted function.

“Alternative to 'deleteModel' could be a counter of connections to a model and let it get deleted when that

count is 0. Or will there always be exactly one visual or other client connected to a model. Then we could have a

start (starts if not available, connects to existing when it is) and release or stop (decrease counter and delete

when counter is 0). Some models may need to ‘stay alive’ and will be used for different whatifs.”

“This is hard to do if not all models are reentrant. From docker it is easier to start the container on request, but

there can be multiple independent instances of the model. Sharing of a started model might be possible,

however it is not yet clear how this can be achieved easily. For example, TNO’s Air Model calculates for a

specific region. The supplied context at start points to the necessary data and after retrieval the model starts

calculating. Currently it won't know what to do when a new context/start is received. When looking from a

container perspective, for a new start a new container with the model is started independent and supplied with

the context of the new request. This model possibly will be deployed somewhere else. Maybe if models exit

themselves when ready and are undeployed upon exit, the deleteModel is not necessary.”

Further discussion is required on the DATA API described in Chapter 2.3, this discussion relates to Topics vs

Datasource references;

“Topics should be opaque, as Users should address data sources, and not topics.”

“However, when pushing data from the model it should have a reference to the topic. This is necessary to

create appropriate events for data change signaling.”

At a later stage of the DUET system development, these open points must be addressed.

HPC using (Docker) Containers for the models, creates a manageable method for attaching models to the DUET

system on-demand and have these models run on platforms with the ideal resources to run effectively. DUET’s

modular architecture can be an enabler to effectively use HPC architectures for the Digital Twin.

At this stage models are not yet adapted for the DUET system and HPC. Although this deliverable describes

the possible methods of adaptation, the actual adaptation of the models is still work in progress. At this time

there is limited data available of how models can benefit from HPC. For the Air Quality model (TNO) the port

to an HPC enabled model decreased calculation times by approximate 200 times (3 hours to 1 minute). Pre-

processing steps are already implemented on an HPC cluster, but not modified for use in the DUET system.

For this model and the other DUET models the adaptation to HPC will be further researched and reported in

Deliverable D3.4 Smart City domains, models and interaction frameworks v2, which is scheduled for M24.

D3.5 Cloud design for model calibration and simulation

© 870697 DUET Project Partners 20 30/11/2020

Although not elaborated within this Deliverable, the separation of the message bus (Kafka) of the DUET T-Cell

and the Model Agent API, could bring an extra level of security into the system. The use of a well-defined API

for models to connect, prevent unsolicited messages from entering the heart of the DUET system, the T-Cell

architecture. For a detailed discussion of security matters, we refer to Deliverable D3.10 Multi Layered

security model specification.

D3.5 Cloud design for model calibration and simulation

© 870697 DUET Project Partners 21 30/11/2020

6. References

− DUET - Digital European Urban Twins https://www.digitalurbantwins.com/

− DUET Technical Architecture document

https://docs.google.com/document/d/1DO5PB22wCzig1mlvoG_LYNA9ebEtmr4lV2uek9C6hZA/edit?

usp=sharing

− Deliverable D3.3 Smart City domains, models and interaction frameworks v1

− Deliverable D3.4 Smart City domains, models and interaction frameworks v2

− Deliverable D3.8 Digital Twin data broker specification and Tools v1

− Deliverable D3.10 Multi Layered security model specification

− Deliverable D5.1 System Architecture & Implementation Plan

− ITEA3 - Massive Calculations on Hybrid Platforms. https://itea3.org/project/mach.html

− Lotos Euros - AIR QUALITY MODELLING AND EMISSIONS. https://lotos-euros.tno.nl/

− Kubernetes - open-source system for automating deployment, scaling, and management of

containerized applications https://kubernetes.io/

https://www.digitalurbantwins.com/
https://docs.google.com/document/d/1DO5PB22wCzig1mlvoG_LYNA9ebEtmr4lV2uek9C6hZA/edit?usp=sharing
https://docs.google.com/document/d/1DO5PB22wCzig1mlvoG_LYNA9ebEtmr4lV2uek9C6hZA/edit?usp=sharing
https://itea3.org/project/mach.html
https://lotos-euros.tno.nl/
https://kubernetes.io/

